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ABSTRACT 
 

Comparing the performance of machine learning algorithms over the same dataset is the current 
research trend. The fact that each algorithm has its underlying assumptions indicate that not all 
algorithms should be compared with each other on the same dataset. Hence, every algorithm 
should be compared only when the dataset satisfies the underlying assumptions. Algorithms that 
are suitable for a certain dataset should only be compared with each other at the optimal level. To 
pave a way for this, this study investigates the performance of several variations of the k-Nearest 

Neighbors (kNN) algorithm on a dataset comprising 569 breast cancer cases from the United 
States. The research evaluates the impact of three distance metrics, namely; Chebyshev, 
Manhattan, and Euclidean, across various values of k. The analysis reveals that the optimal metric 

is Euclidean distance metric and the optimal k  values are k = 21  and 23.  The optimal results 
obtained is 97.37% accuracy, 97.26% (Benign) and 97.56% (Malignant) precision, 98.61% (Benign) 
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and 95.24% (Malignant) recall, and 97.93% (Benign) and 96.39% (Malignant) F1-scores. 
Additionally, the two optimal models (for k = 21  and k = 23 ) exhibit strong agreement on the 
feature’s importance except compactness feature. Further analysis is recommended to better 
understand the role of compactness in breast cancer diagnosis. 
 

 
Keywords: Machine learning; 𝑘  nearest neighbor; breast cancer; hyperparameter tuning; distance 

metrics. 
 

1. INTRODUCTION 
 
As individuals age, a natural process occurs 
wherein cells die and necessitate replacement. 
Under normal circumstances, healthy cells 
undergo division to replace those that are dead 
or dying, thereby maintaining tissue 
homeostasis. However, cancer emerges when a 
normal cell experiences unregulated growth and 
division instead of undergoing apoptosis 
(Weinberg, 1996). The nomenclature of a 
specific cancer typically reflects the tissue or 
organ from which it originates; for example, 
aberrant cells in the breast are responsible for 
breast cancer. In addition to environmental 
factors, hereditary genetic mutations and DNA 
damage that can be transmitted to offspring 
further contribute to the etiology of cancer. 
Breast cancer, in particular, is characterized by 
the onset of abnormal cellular proliferation within 
the breast tissue, frequently culminating in the 
formation of tumors. According to Giaquinto et al. 
(2022), approximately 13% of women are 
expected to receive a breast cancer diagnosis 
during their lifetime. While palpable lumps are 
often the first sign of breast cancer, other 
manifestations may include the development of 
denser lumps, alterations in breast or nipple size 
and shape, changes in the color of the breast 
surface, and unusual fluid discharge not related 
to lactation. Breast tumors can be classified into 
two primary categories: malignant (cancerous) or 

benign (non-cancerous). The process of 
diagnosis and subsequent treatment typically 
commences upon the confirmation of breast 
cancer through imaging modalities such as 
breast ultrasound, mammography, and Fine 
Needle Aspiration (FNA) biopsies (Lim et al., 
2022). These diagnostic procedures may entail 
the administration of ionizing radiation exposure 
or pharmacological interventions. Recently, 
attention has been drawn to machine learning as 
an alternative to multiple tests and scans (Cherif 
2018, Murugan and Kanojia 2020, 2021). 
 
The development of algorithms for machine 
learning (ML) is essential for enabling computers 
to learn from data and draw logical conclusions 
without the need for explicit programming 
instructions. In recent years, machine learning 
has risen to prominence within the field of 
artificial intelligence (AI), attracting considerable 
interest and investment from cancer researchers 
seeking to enhance diagnostic and treatment 
approaches (Chan et al., 2022; Singh et al., 
2023). Fundamentally, machine learning involves 
utilizing advanced computer algorithms to identify 
hidden patterns within large datasets. These 
algorithms are trained to analyze input data, 
recognize pertinent patterns, and subsequently 
construct predictive models that can be applied 
to make informed decisions based on new, 
unseen data (Beam and Kohane, 2018). This 
iterative learning process allows ML systems to

 

 
 

Fig. 1. Benign and Malignant cells 
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continuously refine their accuracy and 
effectiveness over time. A notable application of 
machine learning in oncology, particularly in 
breast cancer treatment, is the early diagnosis of 
the disease. By leveraging advanced imaging 
data such as mammograms, ultrasound images, 
and MRI scans, ML models can detect subtle 
abnormalities that may indicate the presence of 
cancer at its earliest stages. This innovative 
approach not only improves diagnostic accuracy 
but also has the potential to significantly enhance 
patient outcomes by allowing for timely 
interventions, as highlighted by research from 
Balkenende et al. (2022). Through these 
advancements, machine learning is poised to 
transform the landscape of cancer detection and 
treatment, offering renewed hope in the ongoing 
battle against this widespread disease. 
 

Studies on breast cancer have leveraged the 
publicly available Wisconsin Breast Cancer 
Dataset (WBCD). For example, Asri et al. (2016) 
evaluated the effectiveness of four machine 
learning algorithms using this dataset and 
discovered that the Support Vector Machine 
(SVM) approach outperformed the others. 
Similarly, Kumar et al. (2022) employed a 
stacking ensemble method for classification, 
whereas Abdulkareem and Abdulkareem (2021) 
assessed two ensemble models utilizing the 
WBCD. However, the conclusions regarding the 
superiority of one algorithm over another may be 
flawed. Each algorithm operates under specific 
assumptions about the dataset, which means 
that comparisons should only occur between 
algorithms that share similar assumptions. To 
facilitate a fair comparison, two essential 
questions must be addressed: (1) Do the 
algorithms have an equal opportunity to perform 
well with the dataset? and (2) Are the algorithms 
compared using their optimal parameters? 
Unfortunately, many studies neglect these critical 
inquiries. Each algorithm possesses its own 
strengths and weaknesses, and they should only 
be utilized when the underlying conditions are 
satisfied. Moreover, certain parameter values are 
necessary for an algorithm to achieve optimal 
performance. Therefore, all algorithms should be 
compared only when they are functioning at their 
best. This paper is dedicated to identifying the 
requirements for 𝑘-nearest neighbors (𝑘NN) to 
operate at an optimal level when applied to the 
WBCD.  
 

The 𝑘 NN is a supervised machine learning 
algorithm used for classification and regression 
tasks (Hu et al., 2020). It is based on the concept 
of similarity between data points and operates by 

finding the closest data points (neighbors) to 
make predictions. The 𝑘NN algorithm classifies 
an arbitrary data into the most common class 
among the 𝑘 closest datapoints (Nguyen ET AL., 

2023). For regression, it averages all the 𝑘 
closest datapoints and assign it to the arbitrary 
data. The fact that 𝑘 NN is simple, non-
parametric, and flexible, makes its application in 
image recognition (face and handwriting 
recognition), finance (stock market analysis and 
fraud detection) and healthcare (disease 
prediction and medical image analysis) more 
assessable. Although 𝑘NN is non-parametric and 
does not make any assumption about the 
underlying dataset, the algorithm has some 
inherent assumptions on which its performance 
depends. The assumptions include, (1) Similar 
datapoints are close to each other. (2) The 
dataset is representative of the entire population. 
(3) All features contribute equally. (4) The 
dataset is not extremely large. Based on the 
assumptions, 𝑘NN algorithm is useful when the 
dataset is relatively small. The algorithm requires 
space to store the entire dataset since it 
calculates the distance of each instance from the 
query point. Hence, large datasets are 
computationally expensive. Secondly, 𝑘 NN is 
applicable to situations where feature scaling is 
applied. Scaling makes each feature compare on 
the same scale and allows distance metric more 
reasonable. 
 

Numerous studies are currently being conducted 
that focus on comparing various algorithms using 
the WBCD (Wisconsin Breast Cancer Diagnostic) 
dataset. Researchers have sought to 
demonstrate the effectiveness of Support Vector 
Machines (Muralidharr et al., 2023), ensemble 
models (Jabbar, 2021), and several other 
algorithms in achieving superior performance 
(Koca and Aktepe, 2024; Abunasser et al., 
2023). However, despite these efforts, none of 
the studies have recognized 𝑘NN as a leading 
algorithm in this context. This particular study 
aims to explore the optimal conditions under 
which 𝑘 NN can be utilized with the WBCD 
dataset. By doing so, it seeks to enhance the 
understanding of the capabilities and limitations 
in this domain. The insights gained from this 
research will serve as a valuable resource for 
future investigations into the WBCD dataset, 
providing guidance for subsequent studies aimed 
at more effective algorithmic approaches. 
 

2. 𝒌-NEAREST NEIGHBORS 
 

The algorithm for 𝑘 NN is discussed in this 
section, along with the metrics and parameter 
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tuning for optimality. The algorithm, based on the 
code of Halder et al. (2024), for executing 𝑘NN is 
given below; 
 
Inputs: (1) A dataset 𝐷 = {(𝐱𝑖, 𝑦𝑖), 𝑖 = 1 ⋯ 𝑁} , 

𝐱𝑖 ∈ ℝ𝑑 is the feature vector of the 𝑖th instance 
and 𝑦𝑖  is class label. (2) A query instance 𝒒 =
ℝ𝑑 . (3) The number of neighbors 𝑘 . (4) A 
distance metric 𝑑(𝐱𝑖, 𝒒) 
 
The output will be a predicted class �̂�  for the 

query instance 𝑞 . The algorithm is therefore 
given below; 
 
Step #1: Compute distance 𝑑𝑖 = 𝑑(𝐱𝑖 , 𝒒)  for 

each 𝑥𝑖. 
 
Step #2: Sort the dataset 𝐷  based on the 
computed distances so that  
 

𝑑(𝐱1, 𝒒) ≤ 𝑑(𝐱2, 𝒒) ≤ ⋯ ≤ 𝑑(𝐱𝑁 , 𝒒).  
 
Step #3: Select a subset 𝐷𝑘  of 𝐷  so that it 

contains the first 𝑘 entries from 𝐷, that is, 
 

𝐷𝑘 = {(𝐱1, 𝑦1), (𝐱2, 𝑦2), ⋯ , (𝐱𝑘, 𝑦𝑘)}.  
 
Step #4: Count the class label 𝑦 in 𝐷𝑘 so that the 

number of instances with label 𝑦  is 𝑠  and the 

number of instances with different label is 𝑡. 
 
Step #5: If 𝑠 > 𝑡,  then classify 𝒒  as 𝑦.  If 𝑠 < 𝑡, 
then classify 𝒒 as the other label . If 𝑠 = 𝑡 , then 
randomly select. 
 

2.1 Distance Metrics 
 
Distance is key concept in 𝑘NN. Although there 
are some other metrics, the most common 
generalized metric used to measure the distance 
between a point 𝐪 = (𝑞𝑘)𝑘=1⋯𝑛 and the instances 

𝐱𝑖 = (𝑥𝑖,𝑘)
𝑘=1⋯𝑛

 is the Minkowski metric defined 

as  
 

𝑑(𝐪, 𝐱𝑗) = (∑ |𝑞𝑘 − 𝑥𝑖,𝑘|
𝑝𝑛

𝑘=1 )
1

𝑝  
 

where 𝑝  can be adjusted depending on the 
nature of the data. Specifically, the Manhattan 
distance is obtained for 𝑝 = 1, and the Euclidean 

distance is obtained for 𝑝 = 2 (see Liang et al., 
2023; Halder et al., 2024). The algorithm is 
structured to rank the 𝑘 closest points and make 
decision based on the most common class (for 
classification) among the 𝑘  classifications or 

calculate the weighted average of the 𝑘 
classifications (for regression).  

2.2 Hyperparameter  
 
Hyperparameter tuning are required to optimize 
the algorithms (Bischl et al., 2023). The 
hyperparameters of 𝑘 NN are the number of 

neighbors (𝑘) , the distance metric, weighting 
scheme, the search algorithm and the power 
parameter 𝑝 . For the choice of 𝑘 , the rule of 

thumb is to start with  𝑘 = √𝑛 and check if the 

optimal 𝑘 can be found within the neighborhood 

of 𝑘 = √𝑛  (such as 𝑘 = √𝑛 ± 5) . This does not 

necessarily find the optimal 𝑘 (Kusonkhum et al., 
2023). However, cross-validation is a common 
practice in choosing 𝑘. This approach starts by 
splitting the dataset into 𝑘 -folds. The model is 

trained on 𝑘 − 1  folds and tested on the 
remaining fold, and the process is repeated for 
each fold as the candidate 𝑘.  The average 
performance metric is calculated to get identify 
the optimal 𝑘. 
 

2.3 Performance Metrics 
 
The performance metrics are used to measure 
the effectiveness of the model in classifying the 
query point correctly. The confusion matrix 
serves as the first metric that can be easily seen 
and is shown in Fig. 2. The True positive is the 
number of correct classifications of Class 1 
instances into Class 1, the false positive is the 
number of wrong classification of instances into 
Class 1, the false negative is the number of 
wrong classifications into Class 2, and the true 
negative is the number of correct classifications 
of Class 2 instances into Class 2. 
 

 
 

Fig. 2. Confusion matrix 
 
The confusion matrix gives a quick overview of 
the counts, but more in-depth metrics include 
precision, recall, and F1-score and accuracy and 
they are defined by Foody (2023) as 
 

Precision =
True Positive

True Positive+False Positive
× 100%,     

  

Recall =
True Positive

True Positive+False Negative
× 100%  
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F1score = 2 ×
Precision×Recall 

Precision+Recall 
× 100%  

  

Accuracy =
True Positive+True Negative

Total Instances
× 100%  

 
Higher values of these metrics indicate better 
performance of the model. 
 

3. METHODOLOGY 
 

3.1 Data Collection, Description and 
Preprocessing 

 
The data used in this study was downloaded 
from Kaggle website. The dataset was curated 
using fine needle aspirations to remove some 
tissues from the solid breast mass of 569 breast 
cancer patients in Wisconsin. Shafique et al. 
(2023), Abdulkareem and Abdulkareem (2021), 
and Asri et al. (2016) have all used this data. Of 
the 569 observations, 212 are cancerous and 
357 are benign. The diagnosis types are denoted 
as M for malignant and B for benign. Ten (10) 
characteristics of the nucleus of the digitised 
image of the breast mass were recorded. The 
measured characteristics are radius, texture, 
perimeter, area, smoothness, compactness, 
concavity, concave points, symmetry, and fractal 
dimension. The mean, the standard error and the 
worst measurement of each of the ten 
characteristics were recorded. This implies that 
there are a total of 30 features in the dataset. For 
example, the feature named texture is recorded 
three times as texture_worst (calculated by 
computing the mean of the three largest values), 
texture_mean (the mean of the measured 
textures), and texture_se (the standard error of 
the textures). There are therefore a total of 30 
features and one (1) label. The means of each 
feature are extracted from the dataset and we 
have a total of ten features and one label for the 
analysis. The distribution of each class of 
diabetes is shown in Table 1. 

Table 1. Data summary 
 

Diagnosis Frequency Percentage 

B 357 62.74165 
M 212 37.25835 

 

4. RESULTS AND DISCUSSION 
 
The summary statistics is shown in Table 2. 
There are a total of 569 instances with no 
missing value in any of the instance. 
 
Comparing the mean of concave points with the 
mean of area, it becomes clear that the dataset 
is not on the same scale and require scaling. The 
mean of the dataset is normalized and the 
variance is scaled using the formula 
 

𝐱𝑖,𝑠𝑐𝑎𝑙𝑒𝑑 =
𝐱𝑖−𝜇𝑖

𝜎𝑖
,  

 
where 𝐱𝑖  is the feature 𝑖 , 𝐱𝑖,𝑠𝑐𝑎𝑙𝑒𝑑  is the scaled 

version of 𝐱𝑖, 𝜇𝑖 is the mean of the feature 𝑖 and 
𝜎𝑖  is the variance of the feature 𝑖 . This scaling 
brings the all the means to 0 and standard 
deviation 1. Now, the new dataset has ten 
features (each with mean 0 and standard 
deviation 1) and one label.  
 

4.1 Search for Optimal Parameters 
 

The dataset is split into two datasets. The first 
dataset consists of 80% of the entire dataset and 
is used to train the model. The second dataset 
consists of the remaining 20% of the entire 
dataset for testing. In the search for the optimal 
value of 𝑘,  the values of 𝑘  are varied for three 
most common distance metrics and the results 
are compared. The distance metrics are the 
Chebyshev metric, Euclidean metric and 
Manhattan metric and they are defined as follows 
 

𝑑𝑐ℎ𝑒𝑏𝑦(𝐪, 𝐱𝑗) = max
𝑘

|𝑞𝑘 − 𝑥𝑖,𝑘|,  

 
Table 2. Results of data statistics 

 

N Rows N Mean Stdev Min Max Missing CV 

radius 569 14.1273 3.524 6.981 28.11 0 24.945 
texture 569 19.2896 4.301 9.71 39.28 0 22.2971 
perimeter 569 91.969 24.299 43.79 188.5 0 26.4208 
area 569 654.8891 351.9141 143.5 2501 0 53.7364 
smoothness 569 0.0964 0.0141 0.0526 0.1634 0 14.5954 
compactness 569 0.1043 0.0528 0.0194 0.3454 0 50.6155 
concavity 569 0.0888 0.0797 0 0.4268 0 89.7753 
concave_points 569 0.0489 0.0388 0 0.2012 0 79.3204 
symmetry 569 0.1812 0.0274 0.106 0.304 0 15.1325 
fractal_dimension 569 0.0628 0.0071 0.05 0.0974 0 11.243 
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𝑑𝐸𝑢𝑐𝑙𝑖𝑑(𝐪, 𝐱𝑗) = (∑ |𝑞𝑘 − 𝑥𝑖,𝑘|
2𝑛

𝑘=1 )

1

2
,  

  

𝑑𝑀𝑎𝑛ℎ(𝐪, 𝐱𝑗) = ∑ |𝑞𝑘 − 𝑥𝑖,𝑘|𝑛
𝑘=1  .  

 
By starting with the rule of thumb, we set 𝑘 =

√569 ≈ 24.  Values of 𝑘  in the neighborhood of 

𝑘 = 24 are chosen from 𝑘 = 18,19, ⋯ ,29. Since it 
common to consider smaller 𝑘’s, 𝑘 = 3 and 𝑘 = 8 
are also considered. The results are presented in 
Table 3. The precision, recall, and F1-score are 
recorded in percentage and it is clear that 
although Chebyshev and Manhattan metrics 
perform well at some points, the optimal 
behaviour occurs when 𝑘 = 21  and 𝑘 = 23  for 

Euclidean metric. At these values of 𝑘, the model 
has 97.26% precision for Benign, 97.56% 
precision for Malignant, 98.61% recall for Benign, 
95.24% for Malignant, F1-score of 97.93% for 
Benign, and 96.39% F1-score for Malignant. 
 
The results obtained by calculating the accuracy 
from using the three metrics for each 𝑘  are 

recorded in Table 4. The table further confirms 
that the optimal value of 𝑘  is 21 or 23. Fig. 3 
shows that the Chebyshev metric has similar 
behaviour for most of the choice of 𝑘, except at 
few points where the performance drops. 
Manhattan hits its optimal performance at 𝑘 = 24 

and 25, but has similar behaviour other values of 
𝑘 . Finally, the Euclidean metric performs the   

best with the performance optimal at 𝑘 = 21 and 

23.  
 

4.2 Feature Importance 
 
The 𝑘NN algorithm does not inherently have the 
feature importance property because it is a non-
parametric instance-based algorithm. Hence, 
proposed approaches for obtaining the 
importance of the features include permutation 
importance, weighted distance metrics, and 
wrapper method. The permutation importance 
approach is the most common method and it is 
adopted in this study. The approach follows the 
following algorithm; 

 
Table 3. Classification Table (P=Precision, R=Recall, F1 = F1-score 

 

k 
 

Chebyshev Euclidean Manhattan 

P R F1 P R F1 P R F1 

3 B 97.14 94.44 95.77 95.65 91.67 93.62 94.52 95.83 95.17 
M 90.91 95.24 93.02 86.67 92.86 89.66 92.68 90.48 91.57 

8 B 97.14 94.44 95.77 95.65 91.67 93.62 94.52 95.83 95.17 
M 90.91 95.24 93.02 86.67 92.86 89.66 92.68 90.48 91.57 

18 B 97.14 94.44 95.77 95.95 98.61 97.26 94.52 95.83 95.17 
M 90.91 95.24 93.02 97.50 92.86 95.12 92.68 90.48 91.57 

19 B 97.14 94.44 95.77 95.65 91.67 93.62 94.52 95.83 95.17 
M 90.91 95.24 93.02 86.67 92.86 89.66 92.68 90.48 91.57 

20 B 97.14 94.44 95.77 95.65 91.67 93.62 94.52 95.83 95.17 
M 90.91 95.24 93.02 86.67 92.86 89.66 92.68 90.48 91.57 

21 B 93.33 97.22 95.24 97.26 98.61 97.93 92.21 98.61 95.30 
M 94.87 88.10 91.36 97.56 95.24 96.39 97.30 85.71 91.14 

22 B 92.11 97.22 94.59 94.67 98.61 96.60 92.21 98.61 95.30 
M 94.74 85.71 90.00 97.44 90.48 93.83 97.30 85.71 91.14 

23 B 92.11 97.22 94.59 97.26 98.61 97.93 92.21 98.61 95.30 
M 94.74 85.71 90.00 97.56 95.24 96.39 97.30 85.71 91.14 

24 B 92.11 97.22 94.59 93.42 98.61 95.95 92.21 98.61 95.30 
M 94.74 85.71 90.00 97.37 88.10 92.50 97.30 85.71 91.14 

25 B 92.11 97.22 94.59 93.42 98.61 95.95 93.42 98.61 95.95 
M 94.74 85.71 90.00 97.37 88.10 92.50 97.37 88.10 92.50 

26 B 92.11 97.22 94.59 93.42 98.61 95.95 93.42 98.61 95.95 
M 94.74 85.71 90.00 97.37 88.10 92.50 97.37 88.10 92.50 

27 B 97.14 94.44 95.77 95.65 91.67 93.62 94.52 95.83 95.17 
M 90.91 95.24 93.02 86.67 92.86 89.66 92.68 90.48 91.57 

28 B 97.14 94.44 95.77 95.65 91.67 93.62 94.52 95.83 95.17 
M 90.91 95.24 93.02 86.67 92.86 89.66 92.68 90.48 91.57 

29 B 97.14 94.44 95.77 95.65 91.67 93.62 94.52 95.83 95.17 
M 90.91 95.24 93.02 86.67 92.86 89.66 92.68 90.48 91.57 
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Table 4. Accuracy for the three metrics for various choice of k 
 

𝒌  3 8 18 19 20 21 22 23 24 25 26 27 28 29 

Chebyshev 94.74 94.74 94.74 94.74 94.74 93.86 92.98 92.98 92.98 92.98 92.98 94.74 94.74 94.74 
Euclidean 92.11 92.11 96.49 92.11 92.11 97.37 95.61 97.37 94.74 94.74 94.74 92.11 92.11 92.11 
Manhattan 93.86 93.86 93.86 93.86 93.86 93.86 93.86 93.86 93.86 94.74 94.74 93.86 93.86 93.86 
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Fig. 3. Accuracy curve for the three metrics for various k varies 
 

Step #1: Train the 𝑘NN model. 
Step #2: Calculate the performance metrics 
of the model. 
Step #3: Randomly shuffle the values of one 
feature in the dataset. 

Step #4: Recalculate the performance with 
the shuffled dataset. 
Step #5: The drop in performance indicates 
the feature's importance. 

 

 
 

Fig. 4. Feature importance bar chart 
 

Table 5. Feature importance 
 

Feature Importance for 𝒌 =  𝟐𝟏 Importance for 𝒌 =  𝟐𝟑 

Area (A) 0.005232 0.005232 
Compactness (C) -0.00175 0.00177 
Concavity (Cv) 0.001739 0.001754 
Perimeter (P) 0.00177 0.005294 
Concave Points (Pt) -0.00177 0.003524 
Radius (R) 0.01759 0.015852 
Smoothness (S) -0.00177 -0.00175 
Symmetry (Sy) 0.003524 0.005294 
Texture (T) 0.003509 0.003524 
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Having established the optimal performance of 
𝑘NN for the dataset occur for Euclidean metric at 

𝑘 = 21 and 23, the feature importance of each 
feature is demonstrated in Table 5 and Fig. 4. 
The figure shows that both models (models for 
𝑘 = 21  and 𝑘 = 23) agree on the impact of all 
features except the compactness. The Spearman 
rank correlation for the feature importance 
produced from the two models is 0.9341. This 
shows that the two results agree strongly 
positively. 
 

5. CONCLUSION 
 

This study has analyzed the dataset from 569 
breast cancer patients in the United States using 
the 𝑘NN machine learning algorithm. The study 
explored the impact of distance metrics on the 
dataset by evaluating three different distance 
metrics, namely; Chebyshev, Manhattan, and 
Euclidean metrics. Each metric is used on the 
dataset for various values of 𝑘. By evaluating the 
performance of the resulting models, it is found 
that the optimal 𝑘 for this dataset is obtained at 
𝑘 = 21  and 𝑘 = 23 . The optimal precision for 
Benign and Malignant are 97.26% and 97.56% 
respectively, the optimal recall for Benign and 
Malignant are 98.61% and 95.24% respectively, 
and the optimal F1-score for Benign and 
Malignant are 97.93% and 96.39% respectively. 
The optimal accuracy is 97.37%. Moreso, there 
is a strong positive agreement between the two 
optimal models. They both agree on the 
importance of all features except the 
compactness. More analysis is therefore required 
to estimate the importance of compactness. 
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